
The ParaNut/RISC-V Processor - An Open, Parallel,
and Highly Scalable Processor Architecture for

FPGA-based Systems
Alexander Bahle, Gundolf Kiefer
Efficient Embedded Systems Group

Augsburg University of Applied Sciences
Augsburg, Germany

{alexander.bahle, gundolf.kiefer}@hs-augsburg.de

Anna Kerstin Pfützner, Lutz Vollbracht
IBV - Echtzeit- und Embedded GmbH & Co. KG

Augsburg, Germany
annakerstin.pfuetzner@gmail.com,

vollbracht@ibv-augsburg.net

Abstract—The paper presents a customizable, highly scalable,
and RISC-V compatible processor architecture for FPGA-based
systems. A key aspect of the ParaNut architecture is a special
concept of parallelism, which combines advantages of SIMD
vectorization and simultaneous multi-threading in one architec-
ture. At the same time, the complexity of a single computing
core is minimized in order to save area and power. Speculation
techniques are generally avoided in order to save power and to
make the processor robust against security flaws.

The design is presently used in education and research.
In addition, the present implementation passes the RISC-V
compliance tests (RV32IM instructions) and is thus compatible
with the standard RISC-V toolchain. Preliminary experiments on
a Xilinx 7 platform show 0.87 CoreMarks/MHz using 1 core and
3.45 CoreMarks/MHz using 4 cores, revealing an almost perfect
speedup of 3.97.

Keywords—RISC-V, Processor Architecture, FPGA, SIMD

I. INTRODUCTION

General-purpose processors are used in virtually any em-
bedded system because they are easily software-programmable
and have mature toolchains. This great development support
results in a small time to market which helps to keep prices
down for producers as well as consumers. Rising requirements
and demand for low power devices in Internet of Things (IoT)
applications lead to application-specific hardware with special
processors used for artificial intelligence [1] and computer
vision [2]. This trend and the upcoming end of Moore’s Law
drive the development of more efficient systems, but with
customized hardware.

Customizable processors offer the advantages of general-
purpose CPUs with the option to optimize the hardware
for special tasks, which, in turn, allows highly specialized
system architectures at relatively low expense. Decreasing
cost of field-programmable gate arrays (FPGAs) enables the
implementation of application-specific hardware with highly
customizable soft-core processors even at small quantities.

Furthermore, the growing capacity and efficiency of FPGAs
allow to implement Systems-on-a-Chip (SoCs) containing both
specialized hardware together with general-purpose processors
running increasingly complex software. To increase the per-
formance of software, one can add more cores to leverage the
principles of multithreading or add a form of single instruction
multiple data (SIMD) hardware. Graphics processing units
(GPUs) or special SIMD extensions for CPUs are common
examples for SIMD hardware. However, in order to use them
efficiently deep knowledge about the system architecture and
special instructions, such as Intel AVX or ARM NEON, are
needed. Leveraging a GPU typically requires to (re)write the
software using OpenCL or CUDA.

This paper presents a customizable and highly scalable im-
plementation of the ParaNut processor architecture using the
RISC-V instruction set architecture (ISA). The purpose of the
ParaNut architecture is to bridge the gap between thread-level
and data-level parallelism by providing a simple programming
model. In particular, special SIMD instructions are avoided.
The ParaNut specific features are abstracted through RISC-V
standard compatible control and status registers (CSRs). This
allows the use of standard ISA compatible toolchains (GCC)
for software development. From an economic point of view,
the ParaNut processor with its features may be one step on
a path to a new kind of “deeply engineered“ systems that
can combine high efficiency and low cost even for smaller
quantities.

Section II gives an overview of other customizable proces-
sors for FPGA computing platforms as well as other SIMD
extensions, such as the RISC-V vector extension. The basics
of the ParaNut architecture and design considerations that go
along with it are outlined in section III. Section IV describes
the special concepts of parallelism present in the architecture.
Status of compliance with the RISC-V standards and the
current state of software development support is presented in

section V. Experiments and their results are laid out in section
VI, followed by section VII, which concludes the paper.

II. RELATED WORK

Customizable soft-core processors offer different levels of
configurability and thus can be tailored to specific demands.
Examples of commercial soft-core processors are the Xilinx
MicroBlaze [8] and Altera/Intel Nios II [9] which are only
usable on the vendors’ FPGAs. Open source soft-cores are less
restrictive towards specific devices due to the availability of
the hardware description language (HDL) source code. Long
running projects and cores are Cobham Gaisler LEON2/3/4
[10], OpenRISC [11], or Sun OpenSPARC [12]. Since the
release of the RISC-V ISA a new wave of open-source
processors has been developed for various application fields.
On a 32-bit microcontroller scale, some examples are the Z-
scale [13], PULPino/PULPissimo [14], PicoRV32 [15], or the
Freedom E310 [16].

Several general-purpose processors feature extensions with
special instructions for SIMD vectorization. For ARM cores
the vector extension is called VFPv3/NEON [17], for Open-
RISC ORVDX64 [11], for SPARC VIS [18] and for RISC-V
RISC-V Vector Extension [19]. Taking the latest stable draft
of the RISC-V Vector Extension as an example, one can see
that it requires a set of control and status registers (CSRs)
and a special set of vector instructions to execute vectorized
software. The support for vector operations is currently not
implemented in the upstream GCC toolchain, and none of the
aforementioned small RISC-V soft-core processors presently
supports the vector extension.

III. BASIC ARCHITECTURE AND DESIGN
CONSIDERATIONS

The basic design considerations and hardware architecture
of the ParaNut processor are described in detail in [4] for an
earlier OpenRISC variant of the processor. This and the next
section summarize the most relevant aspects in the context of
the new RISC-V version.

A. General Design Goals

Techniques for exploiting parallelism in processors can be
grouped into three categories, namely data-level parallelism
(DLP), instruction-level parallelism (ILP), and thread-level
parallelism (TLP) [3]. The ILP category includes numerous
techniques that aim at improving the single-core performance,
such as (deep) pipelining, out-of-order execution, or VLIW
(very long instruction word) processing. ILP techniques gen-
erally come at the expense of high area usage and power
consumption, which typically increase at a higher rate than
performance improvements. Also, ILP often involves specu-
lation techniques, which may be undesired from a security
point of view. For example, ”Spectre” and ”Meltdown” are
attacks that exploit speculative and out-of-order execution in
some way [21], [22]. For these reasons, the ParaNut design
uses ILP very conservatively and focuses on data-level and
thread-level instead.

In summary, the design of the ParaNut architecture was
guided by the following considerations:

• Optimize the architecture of the cores for area, not speed.
• Provide an efficient memory/cache subsystem to support

many parallel processing units.
• Provide an SIMD execution model to support SIMD

vectorization using standard instructions and high-level
languages.

B. Processor Structure

Figure 1 shows a block diagram of an exemplary ParaNut
instantiation with four full-featured cores (alternatives will
be explained in Section IV). Each core contains an ALU,
a register file, and some control logic, which together form
the Execution Unit (ExU). The instruction port (IPort) is
responsible for fetching instructions from the memory subsys-
tem and contains a small buffer for prefetching instructions.
The data port (DPort) is responsible for performing the data
memory accesses of load and store operations. It contains a
small store buffer and implements write combining and store
forwarding mechanisms as well as mechanisms to support
atomic operations.

The Execution Unit is designed and optimized for a
best-case throughput of one instruction in two clock cycles
(CPI = 2, CPI = ”clocks per instruction”). Unlike other
pipeline designs targeting a best-case CPI value of 1, this
allows to better optimize the execution unit for area, since
no pipeline registers or extra components for the detection
and resolution of pipeline conflicts are required. In addition,
several measures in the ParaNut design help to maintain an
average-case throughput very close to the best-case value of
CPI = 2, even for multi-core implementations (for example,
buffers in the IPorts and DPorts).

The Memory Unit (MemU) contains the cache, the system
bus interface, and a multitude of read and write ports for the
processor cores. Each core is connected to the MemU by two
independent read ports for instructions and data and one write
port for data. All transactions to and from the system bus
(AXI or Wishbone) are handled by a single bus interface unit.
The cache logically operates as a shared cache for all cores.
It can be configured to be 1/2/4-way set associative with a
configurable replacement strategy (e.g. least-recently-used or
pseudo-random).

The design of the memory interface and cache organization
is very critical for the scalability of many-core systems. This
is attributed to several measures inside the Memory Unit. The
cache is organized in independent banks with switchable paths
from each bank to each read and write port. Cache tag data is
replicated to allow arbitrary concurrent lookups. Parallel cache
data access by different ports can be performed concurrently
if their addresses a) map to different banks or b) map to
the same memory word in the same bank. In practice, most
concurrent memory accesses fall into one of these categories.
Moreover, by using dual-ported Block-RAM cells, each bank
can be equipped with two ports, so that up to two conflicting
accesses (i. e. same bank, different addresses) are possible in

www.embedded-world.eu

parallel. The likelihood of contention (i. e. memory accesses
that cannot be handled in parallel) can be reduced at will by
increasing the number of banks which can be configured at
synthesis time.

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

 Interrupts
 Except.

 Priv. Insn.

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

 Interrupts
 Except.

 Priv. Insn.

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

 Interrupts
 Except.

 Priv. Insn.

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

 Interrupts
 Except.

 Priv. Insn.

 Memory Unit

System Bus

ExUExUExUExU

 CPU #0 CPU #1 CPU #2 CPU #3

Cache
Bank

#0

Cache
Bank

#1

Cache
Bank

#2

Cache
Bank

#3

Bus Interface

Fig. 1: Block diagram of a ParaNut with 4 (full-featured) cores

C. Design Methodology

The ParaNut hardware is modeled completely in SystemC
and in general, the same code model is used for hardware
synthesis as well as for building a cycle-accurate instruction
set simulator. This ensures that the simulator reflects the real
hardware behaviour.

The simulator supports the development and debugging of
both hardware and software through the ability to produce
VCD trace files to inspect the inner workings of the processor
and through an OpenOCD-compatible remote-bitbang (RBB)
interface.

For hardware synthesis, major parts of the SystemC proces-
sor model conform to the SystemC Synthesizable Subset [20].
Only some performance-critical modules are implemented
in VHDL. To date, the implementation is mainly used in
education and research. Hence, the implementation is not yet
fully optimized at the gate level.

IV. THE PARANUT ARCHITECTURE: CONCEPTS OF
PARALLELISM

A. Overview

The ParaNut architecture puts a strong emphasis on paral-
lelism on data-level (i.e. SIMD vectorization) and on thread-
level. Common CPU vector SIMD extensions have serious
restrictions that make them difficult to support by compilers,
for example:

• fixed vector widths and available data types,
• inefficient conditional execution with individual vector

elements,
• limited memory addressing modes (e.g. vectors can only

be loaded from subsequent addresses, ”scatter”/”gather”-
like accesses are not possible).

A practical example for the latter case is the calculation of
histograms in image processing (see Figure 4(a)). In the body
of the critical loop

for (int n = 0; n < DATA_SIZE; n++)
histogram[(data[n] & bitmask) >> shifts]++;

the array histogram is accessed in a way that the array index
is calculated individually for each n and depends on the input
array data. Therefore the effective memory address changes
randomly from iteration to iteration and the for loop cannot be
vectorized with the common SIMD vector extensions of most
CPUs.

On the other hand, common SIMD extensions often offer
specialized instructions like ”add with saturation”. These can
be useful in signal or image processing applications, but are
very difficult to support by compilers due to their complex
semantics. This makes them more or less useless for program-
ming in a high-level language.

For this reason, the ParaNut architecture aims to support
SIMD vectorization based on just the standard CPU instruction
set. It introduces a programming model in which the complete
software can be written in a standard programming language
so that a paradigm can be used for SIMD vectorization that is
very similar to thread-level parallelism

B. Linking Cores for SIMD Vectorization

In the ParaNut linked mode multiple CPU cores are linked
together as sketched in Figure 2: The data paths, comprised
of the ALUs, register files, and memory data ports, operate
individually and independently of each other. Only one in-
stance of the execution control hardware (comprised of the
program counter, instruction unit, the instruction memory port,
and some more logic) is active, and all cores are controlled
by the same control signals originating from the master CPU
(#0 in Figure 2). As a result, all cores now execute identical
instructions with individual data in a synchronous way and the
hardware behaves like a SIMD processor. However, unlike the
instructions in special SIMD vector extensions, the commands
are standard RISC-V instructions.

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

 Interrupts
 Except.

 Priv. Insn.

 Memory Unit

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

 Interrupts
 Except.

 Priv. Insn.

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

 Interrupts
 Except.

 Priv. Insn.

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

 Interrupts
 Except.

 Priv. Insn.

Fig. 2: ParaNut processor operating in linked mode

From a software perspective, this behaviour is almost equiv-
alent to that of a multi-core processor running the same code in
multiple independent threads. The operation is fully equivalent
as long as the instruction sequence does not contain any
conditional branches or indirect jump instructions that evaluate

www.embedded-world.eu

differently on the cores. Considering this restriction, SIMD
vectorization can be adopted using standard instructions.

For example, the C code fragment

int n, a[4], b[4], w[4], wsum[4];
...
for (n = 0; n < 4; n++)
wsum = a[n] * w[n] + b[n] * (100 - w[n]);

...

can be transformed and vectorized as follows:

int n, a[4], b[4], w[4], wsum[4];
...
n = pn_begin_linked (4);
/* turns on linked mode, returns core id (0..3) */
wsum = a[n] * w[n] + b[n] * (100 - w[n]);
pn_end_linked ();
/* switches back to single-thread mode */
...

Initially, the processor runs in single-thread mode, with
the primary core executing code and the linked cores being
inactive. The macro pn begin linked() activates the linked
cores with the effect that the subsequent code is executed
synchronously 4 times in parallel. Conversely, the macro
pn end linked() marks the end of the parallel section and
causes the linked cores to be deactivated again. Another
example is shown below in Figures 3 (a) and 3 (b).

From a hardware perspective, the linked mode has consid-
erable advantages over full-featured multi-processing: Linked
cores do not emit any memory accesses for instruction fetches.
This may greatly reduce the load on the memory subsystem
and avoids system bus contention. Furthermore, a considerable
amount of hardware can be saved by omitting the control logic
of cores that are only operated in linked mode.

C. Thread-Level Parallelism

The ParaNut architecture also allows the definition of cores
that can execute independent threads, but are lacking some fea-
tures such as support for interrupts, exceptions, and privileged
system instructions in order to save hardware. The program-
ming interface (see Section V-B) is very similar to the linked
mode interface and contains two macros pn begin threaded()
and pn end threaded() to open and close a parallel section for
conventional multi-threaded code.

As mentioned in Section IV-B, in linked mode certain
restrictions related to conditional branches apply, which limits
the use of ”if” and ”case” instructions, for instance. In thread
mode there are no restrictions on used instructions. The
transition from linked mode to thread mode code is facilitated
by the thread mode programming interface and vice versa.
Figure 3 shows an example of a loop (Figure 3a) and its
vectorized variants in linked mode (Figure 3b) and thread
mode (Figure 3c) respectively.

For (multi-core) processors that do not support the linked
mode, the linked mode macros can be mapped to their thread
mode counterparts, and the code will still execute correctly in
multiple parallel threads. Therefore, source code containing
sections for the ParaNut’s linked mode still remains fully
portable.

int a[1000], b[1000], s[1000];
int n, id;
...
for (n = 0; n < 1000; n += 1)
s[n] = a[n] + b[n];

(a) Original (sequential) version

int a[1000], b[1000], s[1000];
int n, id;
...
id = pn_begin_linked (4);
for (n = 0; n < 1000; n += 4)
// Note: n is always identical in all threads
s[n + id] = a[n + id] + b[n + id];

pn_end_linked ();

(b) Vectorized version (Linked Mode)

int a[1000], b[1000], s[1000];
int n, id;
...
id = pn_begin_threaded (4);
for (n = 0; n < 1000; n += 4)
// Note: n is always identical in all threads
s[n + id] = a[n + id] + b[n + id];

pn_end_threaded ();

(c) Threaded version (Thread Mode)

Fig. 3: Parallel loop example demonstrating the usage of (b)
linked mode and (c) thread mode

uint32_t *histogram, *data, bitmask, shifts;
...
for (int n = 0; n < DATA_SIZE; n++)

histogram[(data[n] & bitmask) >> shifts]++;
...

(a) Original (sequential) version

uint32_t *histogram, *data, bitmask, shifts,
chunk, cpuid;
...
cpuid = pn_begin_linked(4);
/* Each core gets its own result array */
histogram = histogram + HIST_SIZE*cpuid;
for (int n = cpuid; n < DATA_SIZE; n += 4)

histogram[(data[n] & bitmask) >> shifts]++;
pn_end_linked();
/* Reduce all results into one histogram */
...

(b) Vectorized version (Linked Mode)

uint32_t *histogram, *data, bitmask, shifts,
chunk, cpuid;

...
cpuid = pn_begin_threaded(4);
/* Each core gets its own result array */
histogram = histogram + HIST_SIZE*cpuid;
for (int n = cpuid; n < DATA_SIZE; n += 4)

histogram[(data[n] & bitmask) >> shifts]++;
pn_end_threaded();
/* Reduce all results into one histogram */
...

(c) Threaded version (Thread Mode)

Fig. 4: Basic histogram calculation (a) and the parallel code
for the linked mode (b) and thread mode (c)

www.embedded-world.eu

Mode 0
(Inactive)

Mode 1
(Linked / Vector)

Mode 2
(Thread)

Mode 3
(Full)

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

 Interrupts
 Except.

 Priv. Insn.

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

 Interrupts
 Except.

 Priv. Insn.

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

 Interrupts
 Except.

 Priv. Insn.

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

 Interrupts
 Except.

 Priv. Insn.

Fig. 5: Modes of a ParaNut core

 DPort

 ALU

 Reg.-
 File

 DPort

 ALU

 Reg.-
 File

Memory Unit

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

 Interrupts
 Except.

 Priv. Insn.

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

Capability: 1 2 13

Fig. 6: Example of a ParaNut instantiation with cores of
different capabilities

D. Modes and Capabilities

Based on the different modes of operation discussed so
far, the ParaNut architecture defines 4 different CPU modes,
which are sketched in Figure 5. In mode 0, the core is inactive
(i. e. currently unused). In mode 1, the core operates in the
linked mode as explained above. A core running in mode 2
can execute a thread autonomously. It supports all standard
instructions, but no interrupts, exceptions, or privileged system
instructions. Finally, a processor in mode 3 represents a full-
featured CPU. Usually, only one core needs to support mode
3, which allows a considerable amount of complexity to be
saved for the other cores while maintaining all options for
efficient thread-level or data-level parallelism.

It is not necessary that each core supports all 4 modes.
At synthesis time, the available modes can be selected on a
per-core basis by means of a capability level. A capability
level of n means that the core can operate in mode n or
any mode below at runtime. For example, Figure 6 shows
a ParaNut instance with one capability-3, one capability-2,
and two capability-1 cores. This processor can be arbitrarily
configured at runtime to execute, for example, two threads in
parallel or one thread with 4-way SIMD-vectorized code (see
Figure 7).

V. RISC-V COMPLIANCE AND SOFTWARE DEVELEPMENT
SUPPORT

A. RISC-V Compliance and Debugging

The ParaNut/RISC-V implementation aims to be fully com-
patible with standard RISC-V compilers and tools. It is based
on the RISC-V Instruction Set Manual Volume I and Volume
II Version 20190608 [23], [24]. For support with the standard
debug tools the RISC-V External Debug Support Version 0.13
was used to implement a Debug Module [25].

 DPort

 ALU

 Reg.-
 File

 DPort

 ALU

 Reg.-
 File

Memory Unit

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

 Interrupts
 Except.

 Priv. Insn.

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

Capability: 1 2 13
 Mode: 0 0 03

(a)

 DPort

 ALU

 Reg.-
 File

 DPort

 ALU

 Reg.-
 File

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

 Interrupts
 Except.

 Priv. Insn.

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

Capability: 1 2 13
 Mode: 0 2 03

Memory Unit

(b)

 DPort

 ALU

 Reg.-
 File

 DPort

 ALU

 Reg.-
 File

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

 Interrupts
 Except.

 Priv. Insn.

 DPort IPort

 IR
 PC

 ALU

 Reg.-
 File Ctrl

Capability: 1 2 13
 Mode: 1 1 13

Memory Unit

(c)

Fig. 7: ParaNut of Figure 6 running (a) single-threaded code,
(b) two independent threads, and (c) 4-way vectorized SIMD
code

The RISC-V Foundation Compliance Task Group pro-
vides a repository containing multiple compliance tests
[26]. By providing a user-defined target for the tests, the
ParaNut/RISC-V SystemC model has been validated to con-
form to the RV32I Base Integer Instruction Set and the RV32M
Standard Extension for Integer Multiplication and Division
standards. The ParaNut/RISC-V also supports a subset of the
RV32A Standard Extension for Atomic Instructions, namely
the “lr.w“ and “sc.w“ instructions, which are sufficient to
implement all standard synchronization mechanisms (e.g. mu-
tex, semaphore). Table I shows an overview of all supported
RISC-V extensions. The third column contains a “X“ if
the compliance test for the extension in question has been
successfully passed, and the fourth column shows whether the
extension is optional at synthesis time.

TABLE I: Supported RISC-V Extensions

Name Description Com. Opt.
RV32I Base Integer Instruction Set X
RV32Zicsr Control and Status Registers X
RV32M Integer Multiplication and Division X X
RV32A Atomic Instructions (see text) X

www.embedded-world.eu

B. Software Support Library

In order to support the ParaNut-specific hardware features,
a support library libparanut has been developed. The aim of
this C library is to encapsulate all features not common to
RISC-V in a portable and lightweight way.

libparanut provides a portable application programming
interface (API) for the following functionalities:

Basics:
This includes some basic functions, for example reading the
processor status or the configuration.

Linked Mode:
A set of functions for turning the linked mode on and off,
either by a passed number of cores or by a core bitmask.
Central functions include:

PN_CID pn_begin_linked(PN_NUMC numcores);
PN_CID pn_begin_linked_m(PN_CMSK coremask);
PN_CID pn_begin_linked_gm(

PN_CMSK *coremask_array,
PN_NUMG array_size);

int pn_end_linked(void);

Thread Mode:
A set of functions for turning the thread mode on and off.
The API is very similar to the linked mode functions so that
application code that is no longer suitable for linked mode
execution can easily be changed to operate in thread mode.
Central functions include:

PN_CID pn_begin_threaded(PN_NUMC numcores);
PN_CID pn_begin_threaded_m(PN_CMSK coremask);
PN_CID pn_begin_threaded_gm(

PN_CMSK *coremask_array,
PN_NUMG array_size);

int pn_end_threaded(void);

Synchronization:
Set of functions to provide synchronization between paral-
lel ParaNut cores. At present, a spinlock is implemented.
Further synchronization primitives may be added in future
versions.

Memory Unit:
Functions for managing the memory unit, such as cache
invalidation or cache flushing.

Exceptions and Interrupts:
Handlers for ParaNut-specific exceptions and interrupts and
support functions to let the application programmer define
their own handlers.

The libparanut library is compilable using a standard
RISC-V GCC toolchain and is written in a generic way to sup-
port arbitrary ParaNut configurations without recompilation.
Currently it is used together with the RISC-V newlib 2.5.0
port. A Linux user-mode variant of libparanut is planned to
support future processor versions running a Linux operating
system.

libparanut is provided with an extensive unit test, and the
test cases serve as code examples for the correct API usage
in addition to the existing documentation.

VI. EXPERIMENTAL RESULTS

A. Setup

The ParaNut/RISC-V processor was configured according to
table II. A ZYBO Z7-20 Zynq-7000 ARM/FPGA SoC platform
featuring a Xilinx XC7Z020-1CLG400C device was used to
host the system. Figure 8 shows an overview of the system.
The ARM Application Processing Unit (APU) present on the
SoC is used to handle serial UART communication to the host
machine and to load software into the DDR3 memory.

ParaNut
(AXI Master)

A
X

I B
u

s

APU
ARM Cortex A9

(AXI Master)

DDR3
Controller
(AXI Slave)

JTAG TAP

UART DDR3
Memory

Debug
Module

Zynq Processing System (PS)

Zynq Programmable Logic (PL)

Fig. 8: Block diagram of the ParaNut/RISC-V system

TABLE II: ParaNut/RISC-V Benchmark configuration

Parameter Value
Clock Speed 20 MHz
CPU Cores 1...8
M-Extension X
A-Extension (lr.w and sc.w) X
Cache size 32 kB
Cache sets 512
Cache line size 16 Bytes (4 Banks)
Cache associativity 4 ways
Cache replacement strategy LRU
Instruction buffer size (IPort) 4 words
Write buffer size (DPort) 4 words

B. Synthesis Results

The different configurations of the ParaNut/RISC-V have
been synthesized using Xilinx Vivado 2017.2. Table III shows
the slice usage of the ParaNut/RISC-V featuring 1 core with
a capability of 3 and up to 7 cores with a capability of 2. For
comparison, a RocketChip based Freedom E310 with standard
options was synthesized for the Artix-7 35T Arty FGPA Eval-
uation Kit. The last row shows the size of a single processor
“tile“ including the core itself and the instruction/data cache
of 16kB each. As mentioned above, the ParaNut/RISC-V is
not fully optimized yet to facilitate its use in education and
research, and the single-core ParaNut uses slightly more slices
than the Freedom E310. However, a multi-core system would
require a complete “tile“ per core, whereas multiple cores of
a ParaNut can share parts of the memory logic.

Figure 9 shows the distribution of slices over the main
components of the ParaNut processor. The sublinear growth
in overall size is a big advantage over other cores that need
to add a whole new core to the system to execute multiple

www.embedded-world.eu

threads. Figure 10 shows the effect the maximum capability
can have on resource usage. The mode 1 capable cores do not
require their own IPort and therefore an additional port to the
MemU. This, in turn, frees up 2094 slices in this case, while
retaining the ability to run data-parallel software.

TABLE III: Zynq 7000 resource usage

Cores Slice LUTs Slice FFs Slices Increase
1 7,139 3,759 2,504 1.00
2 12,433 6,094 4,185 1.67
4 23,599 10,712 7,265 2.90
8 44,393 19,536 12,473 4.98

Freedom E310 (1 tile) 6,713 4,131 2,139

Fig. 9: Distribution of slices over main components of the
ParaNut processor

Fig. 10: Distribution of slices over main components of a
ParaNut processor using 8 cores with different capabilities

C. Benchmark Results

The CoreMark benchmark was compiled using GCC version
8.3.0 and the “newlib“ C library. Compiler options were set
according to the hardware configuration (-O3 -march=rv32im
-mabi=ilp32). The benchmarks were evaluated at a clock
frequency of 20 MHz.

Table IV shows the results of the CoreMark benchmark
run, which was performed several times with an increasing
number of parallel threads. The results show that although the
ParaNut/RISC-V has a shared cache for its cores, at 4 cores an
almost perfect speedup of 4 is achieved, and even at 8 cores
the speedup is about 7.6.

To evaluate the performance of the new linked mode
(mode 1) the histogram calculation program shown in Sec-
tion IV-B and Figure 4 has been executed on a system with 4
cores for a data size of 1920∗1080∗4 Bytes. The runtime was

measured using the internal timer and the results are shown
in table V.

TABLE IV: CoreMark benchmark results

Processor Cores CoreMark/MHz Speedup

ParaNut
1 0.87 1.00
2 1.73 2.00
4 3.45 3.97
8 6.59 7.59

MicroBlaze [28] 1 1.90
HiFive Unleashed [28] 1 2.01

TABLE V: Histogram runtime results

Type Time/ms Speedup
Sequential (a) 4,616.03 1.00

Linked Mode (b) 1,467.11 3.14
Thread Mode (c) 1,437.55 3.21

D. Demonstrator System ”Pong-on-a-Chip”
In order to evaluate the practical usability of the proces-

sor architecture and the support library libparanut, a Pong-
like mixed reality game has been implemented. The sys-
tem incorporates a ParaNut processor as the main processor
and a hardware-accelerated image processing chain using
the ASTERICS framework [29]. It is implemented on the
same ZYBO Z7-20 FPGA board as used for the previous
experiments.

Figure 11 shows the application. A virtual red ball is drawn
over a camera image and animated in such a way that the ball
is reflected by edges detected in the camera image. Players
can put their hands or objects in front of the camera and play
with the ball.

The ASTERICS subsystem contains an edge detector imple-
mented in hardware, while the complete software and game
application are running on a ParaNut. It should be noted
that the software includes a complex software library for the
ASTERICS subsystem, including drivers for the camera and
image processing chain as well as a drawing library for the
overlay, which has been executed on ARM processors before.

VII. CONCLUSION

The ParaNut/RISC-V processor is a new, open, scal-
able, and RISC-V compatible processor based on the
ParaNut architecture. The special concepts of different exe-
cution modes and capabilities allow for thread and data-level
parallelism. The implementation is available as a SystemC
model, serving both as an instruction set simulator and as the
basis for an FPGA-proven SystemC/VHDL synthesis model.
Easy access and abstraction to the ParaNut-specific features,
especially to control the linked and threaded execution, are
provided by the libparanut software library. Benchmarks show
promising results with respect to scalability at 4 and 8 cores.

The project is still actively in development and leaves room
for optimizations and improvements. Ongoing work focuses on
improving the timing and overall performance. Furthermore,
the development of a memory management unit (MMU) has
already been started to support operating systems like Linux
in the future.

www.embedded-world.eu

Fig. 11: Pong-like mixed reality game with ASTERICS and a
ParaNut processor

ACKNOWLEDGMENT

The authors would like to thank Walter Eberl-Schell,
Christian Merkle, Christian Meyer, Dominic Rath, Michael
Schäferling, and Michael Seider for their valuable comments
and suggestions for improving this work.

REFERENCES

[1] Norman P. Jouppi, Cliff Young, Nishant Patil, and David Patterson,
“Motivation for and evaluation of the first tensor processing unit.“ IEEE
Micro 38.3 (2018): 10-19, May 2018

[2] Gideon P. Stein, Elchanan Rushinek, Gaby Hayun, and Amnon Shashua,
“A computer vision system on a chip: a case study from the automotive
domain.“, 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05)-Workshops, September 2005

[3] John L. Hennessy and David A. Patterson, ”Computer Architecture - A
Quantitative Approach” (6th Edition), Morgan Kaufmann, 2017, ISBN
9780128119051

[4] Gundolf Kiefer, Michael Seider, and Michael Schäferling, ”ParaNut - An
Open, Scalable, and Highly Parallel Processor Architecture for FPGA-
based Systems”, Embedded World Conference, Nürnberg, February 2015

[5] Xilinx Inc., “DS190: Zynq-7000 SoC Data Sheet: Overview“, July 2018
[6] Xilinx Inc., “DS890: UltraScale Architecture and Product Data Sheet:

Overview“, August 2019.
[7] Intel Co., “Intel Stratix 10 Hard Processor System Technical Reference

Manual“, May 2019
[8] Xilinx Inc., “UG081: MicroBlaze Processor Reference Guide“, January

2008
[9] Intel Co., “NII5V1: Nios II Classic Processor Reference Guide“, June

2016
[10] Gaisler Jiri and Isomäki Marko, “LEON3 GR-XC3S-1500 Template

Design.“, Gaisler Research, 2006.
[11] opencores.org, “OpenRISC 1000 Architecture Manual, Architecture

Version 1.0“, December 2012
[12] Sun Microsystems Inc., “OpenSPARC T2 Core Microarchitecture Spec-

ification“, December 2007
[13] Yunsup Lee, Albert Ou, and Albert Magyar, “Z-scale: Tiny 32-bit RISC-

V systems.“, Open-RISC Conf. Geneva, Switzerland, June 2015
[14] Traber Andreas, et al., “PULPino: A small single-core RISC-V SoC.“,

3rd RISCV Workshop, January 2016.
[15] Wolf Clifford, “PicoRV32 - A Size-Optimized RISC-V CPU“, 2019,

[Online]. Available: https://github.com/cliffordwolf/picorv32
[16] SiFive, “SiFive’s Freedom platform“, [Online], Available:

https://github.com/sifive/freedom

[17] ARM Limited, “Cortex-A9 NEON Media Processing Engine“, Revision:
r2p2, April 2010

[18] Wozniak Andrzej, “Using video-oriented instructions to speed up se-
quence comparison.“, Bioinformatics 13.2: 145-150, 1997

[19] Alon Amid, et al., , “RISC-V Vector Extension, Version 0.8“, December
2019

[20] Accellera Systems Initiative Inc., “SystemC Synthesizable Subset Ver-
sion 1.4 Draft“, January 2015

[21] Kocher, Paul, et al., “Spectre attacks: Exploiting speculative execution.“,
2019 IEEE Symposium on Security and Privacy (SP). IEEE, May 2019

[22] Lipp, Moritz, et al., “Meltdown.“, arXiv preprint arXiv:1801.01207,
January 2018

[23] Andrew Waterman and Krste Asanović, “The RISC-V Instruction Set
Manual, Volume I: User-Level ISA, Document Version 20190608-Base-
Ratified“, RISC-V Foundation, June 2019

[24] Andrew Waterman and Krste Asanović, “The RISC-V Instruction
Set Manual, Volume II: Privileged Architecture, Document Version
20190608-Priv-MSU-Ratified“, RISC-V Foundation, June 2019

[25] Tim Newsome and Megan Wachs, “RISC-V External Debug Support
Version 0.13“, RISC-V Debug task group, October 2018

[26] RISC-V Compliance Task Group, [Online], Available:
https://github.com/riscv/riscv-compliance

[27] Krste Asanović, et al., “The Rocket Chip Generator“, Technical Re-
port UCB/EECS-2016-17, EECS Department, University of California,
Berkeley, April 2016

[28] Embedded Microprocessor Benchmark Consortium (EEMBC), “Core-
Mark Benchmark Scores Database.“, December 2019. [Online]. Avail-
able: https://www.eembc.org/coremark/scores.php

[29] Efficient Embedded Systems Group UAS Augsburg, [Online], Available:
https://ees.hs-augsburg.de/asterics

www.embedded-world.eu

@Article{Kiefer2020,

 author = {Gundolf Kiefer and Alexander Bahle and Anna Kerstin Pf"utzner and Lutz Vollbracht},

 journal = {EmbeddedWorld},

 title = {The ParaNut/RISC-V Processor - An Open, Parallel and Highly Scaable Processor Architecture for FPGA-based Sytems},

 year = {2020},

 note = {Abgerufen: 10.12.2022},

 pages = {1-8},

 file = {:Kiefer2020 - The ParaNut_RISC V Processor an Open, Parallel and Highly Scaable Processor Architecture for FPGA Based Sytems.pdf:PDF},

 url = {https://ees.hs-augsburg.de/paranut/paranut-paper-ew2020.pdf},

}

